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Why Process Modelling

Key objectives of software companies:

high quality products
high performance processes
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Why a Hybrid Approach

The software process is composed by various activities:

some are sequential, others may be performed
concurrently

activities exchange artifacts
activities consume resources and may collide

To model a software process we have to deal with both
discrete system aspects (start/end of an activity,
reception/release of an artifact) and continuous system

aspects (resource consumption, percentage of developed
product).




A Hybrid Two-level Modelling Approach
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Process Activities

Modelling the SEL Software Process
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The Higher Abstraction Level

Modelling the
process structure
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The processis modelled by a discrete-event queue net:
eactivities are networ ked sets of service stations

esartifacts are circulating customers




Higher Abstraction Level

LLD defects reports (due to previous activities)
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Higher Abstraction Level of the Process
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The Lower Abstraction Level

Modelling the

activities behaviours ﬁ —

=N

Each activity (service station) is modelled by:
«an analytical average-type function,
*Or a continuos type time-varying function,

*Or a combination ther eof.
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Lower Abstraction Level of the “Work Station”
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Applying the Model

Two possible software development scenarios are
simulated:

e with stable set of requirements (1500 FPs)
e with a certain amount of requirements instability

The main process attributes are effort (W), delivery
time (T), productivity (P), rework percentage (RWK),
and product defect density (DFD).
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Stable Requirements — Comparison with SEL

Attribute

Model Conf. 95% SEL
Final Size 116 KLOC +/- 20 116
Effort 500 PW +/- 60 600
Delivery 78 W +/- 3 63
Productivity 5.8 +/- 1.8 5.3
LOC/p-hour
Rework % 17 % +/- 3% /
Defect Density 0.9 +/- 0.3 /
Defects/KLOC
Average Staff 6.5P +/-1 9.5
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Stable Requirements — Comparison with SEL
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Effects of Instablility on the Staffing Profile
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Conclusions

Simulation results demonstrate the capability of the
described model of

e reproducing empirically-known facts
 being adopted as tool to test process assumptions

The suggested approach allows high model flexibility
and reusability:

e easy extension to other process paradigms and easy
hierarchical modelling of activities’s details;

 adaptable to the maturity of the target environment,
and updatable to follow its evolution (CMM, QIP).
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